基因家族鉴定分析

 

 揭示基因演化规律 | 发现新功能基因 | 指导疾病研究 | 多项成功案例

 

 根据您的具体研究目标和需求,我们可以提供个性化的基因家族分析方案,确保分析结果的针对性和实用性

 

了解更多

 

 

叶绿体基因组测序分析

 

高精度测序|全面分析|定制化报告|专业支持

高效、精准、可靠,叶绿体基因组测序分析,为您的植物科学研究提供有力保障

 

 

了解更多

 

 

动物线粒体基因组测序分析

 

 精准分析 

 引领细胞器研究新潮流 

 科研突破尽在掌

 

 

了解更多

佰数生物

专业的分析 可靠的结果

专业从事生物学大数据分析

 

 

植物线粒体基因组测序分析

 

作物遗传改良 | 生态与进化研究 | 生物能源开

 

经验丰富的生物信息学家和遗传学家团队提供全程技术支持与咨询服务

了解更多
了解更多
  • 回到顶部
  • 18578757102
  • QQ客服
  • 微信二维码

基因家族鉴定分析

基因家族(Gene family),是来源于同一个祖先,由一个基因通过基因重复而产生两个或更多的拷贝而构成的一组基因,它们在结构和功能上具有明显的相似性,编码相似的蛋白质产物。
  • 基因家族鉴定分析

    基因家族介绍

     基因家族(Gene family),是来源于同一个祖先,由一个基因通过基因重复而产生两个或更多的拷贝而构成的一组基因,它们在结构和功能上具有明显的相似性,编码相似的蛋白质产物。同一家族基因可以紧密排列在一起,形成一个基因簇,但多数时候,它们是分散在同一染色体的不同位置,或者存在于不同的染色体上的,各自具有不同的表达调控模式。研究人员主要关注一些重要的转录因子和酶家族,这些家族成员和生物的生长发育、逆境胁迫、初生代谢和此生代谢的合成、积累、化学修饰以及转运等生物过程息息相关。因此,对基因家族的系统研究,筛选出一个家族中的其关键功能的基因,并预测与之互作或具有调控关系的基因,可以为后期的深入实验验证提供理论指导。也为提高产量、抗性、品质或害虫防控等提供理论基础。

    服务亮点

    1. 全面覆盖,深度解析:我们的服务覆盖从基因识别、序列比对、进化树构建、时空特异性表达,共表达、共线性分析、以及扩张收缩和三维结构建模的全过程,利用先进的生物信息学工具,深入挖掘基因家族成员间的功能关联与演化规律,为您揭示生命的奥秘。

    2. 定制化方案,精准匹配:针对您的具体研究方向和需求,我们提供一对一的定制化服务方案,无论是植物、动物还是微生物的基因家族研究,我们都能提供最适合的分析策略,确保结果的高准确性和实用性。

    3. 高效交付,省心省力:我们深知时间对于科研工作的宝贵,因此承诺在最短时间内提供高质量的分析报告,同时配备专业的客服团队,随时解答您的疑问,确保您的科研之路畅通无阻。

    4. 数据安全,隐私保护:我们严格遵守国际数据保护法规,采用先进的加密技术保护您的科研数据安全,确保您的研究成果免受侵害。

    为何选择佰数生物

    • 专业团队:汇聚了国内外顶尖的生物信息学专家与遗传学家,拥有丰富的科研经验和成功案例。
    • 技术领先:持续投入研发,采用最前沿的生物信息学算法和技术平台,确保分析结果的准确性和前沿性。
    • 广泛认可:已为全球众多知名高校、研究机构及制药企业提供服务,赢得了广泛的赞誉与信任。

    立即行动,开启科研新篇章

    现在联系我们,即可享受首次合作专属优惠,包括但不限于免费初步数据分析报告、定制化服务折扣等。让我们携手,以基因家族分析为钥匙,解锁生命科学的无限可能,共同推动科研事业的蓬勃发展。

     

     

     

    基因家族鉴定分析流程图

     

     

    我公司基因家族分析代表文章(#为我司技术人员为共同作者,@为致谢我司技术人员):

    1. Du Z, You S, Zhao X, Xiong L and Li J (2022) Genome-Wide Identification of WRKY Genes and Their Responses to Chilling Stress in Kandelia obovata. Front. Genet. 13:875316. doi: 10.3389/fgene.2022.875316

    2. # Li T, Li M, Jiang Y, et al. Genome-wide identification, characterization and expression profile of glutaredoxin gene family in relation to fruit ripening and response to abiotic and biotic stresses in banana (Musa acuminata)[J]. International Journal of Biological Macromolecules, 2021, 170: 636-651. (一区)

    3. # Yan H, Hua M G, da Silva J A T, et al. Genome-wide identification and analysis of NAC transcription factor family in two diploid wild relatives of cultivated sweet potato uncovers potential NAC genes related to drought tolerance[J]. Frontiers in Genetics, 2378.

    4. # Yu Z, Zhang G, da Silva J A T, et al. Genome-wide identification and analysis of DNA methyltransferase and demethylase gene families in Dendrobium officinale reveal their potential functions in polysaccharide accumulation[J]. BMC Plant Biology, 2021, 21(1): 1-17.

    5. Gao C, Gao K, Yang H, et al. Genome-wide analysis of metallothionein gene family in maize to reveal its role in development and stress resistance to heavy metal[J]. Biological Research, 2022, 55(1): 1-13.

    6. Li H, Guan H, Zhuo Q, et al. Genome-wide characterization of the abscisic acid-, stress-and ripening-induced (ASR) gene family in wheat (Triticum aestivum L.)[J]. Biological Research, 2020, 53(1): 1-16.

    7. @ Si, C., He, C., Teixeira da Silva, J.A. et al. Metabolic accumulation and related synthetic genes of O-acetyl groups in mannan polysaccharides of Dendrobium officinale. Protoplasma (2021). https://doi.org/10.1007/s00709-021-01672-8

    8. Wang T, Jia Z H, Zhang J Y, et al. Identification and Analysis of NBS-LRR Genes in Actinidia chinensis Genome[J]. Plants, 2020, 9(10): 1350.

    9. Wang G, Wang T, Jia Z H, et al. Genome-wide bioinformatics analysis of MAPK gene family in kiwifruit (actinidia chinensis)[J]. International journal of molecular sciences, 2018, 19(9): 2510.

    10. # He C, Si C, da Silva J A T, et al. Genome-wide identification and classification of MIKC-type MADS-box genes in Streptophyte lineages and expression analyses to reveal their role in seed germination of orchid[J]. BMC plant biology, 2019, 19(1): 223.

    11. # He C, da Silva J A T, Wang H, et al. Mining MYB transcription factors from the genomes of orchids (Phalaenopsis and Dendrobium) and characterization of an orchid R2R3-MYB gene involved in water-soluble polysaccharide biosynthesis[J]. Scientific reports, 2019, 9(1): 1-19.

    12. # Guo J, Duan H, Xuan L, et al. Identification and functional analysis of LecRLK genes in Taxodium ‘Zhongshanshan’[J]. PeerJ, 2019, 7: e7498.

    13. # Su T, Han M, Min J, et al. Genome-Wide Characterization of AspATs in Populus: Gene Expression Variation and Enzyme Activities in Response to Nitrogen Perturbations[J]. Forests. 2019, 10(5): 449.

    14. @ Jin X, Cao D, Wang Z, et al. Genome-wide identification and expression analyses of the LEA protein gene family in tea plant reveal their involvement in seed development and abiotic stress responses[J]. Scientific reports, 2019, 9(1): 1-15.

    15. # Yan H, Zhang Y, Xiong Y, et al. Selection and Validation of Novel RT-qPCR Reference Genes under Hormonal Stimuli and in Different Tissues of Santalum album[J]. Scientific Reports. 2018, 8(1): 17511. IF= 4.122

    16. # He C, Teixeira Da Silva J A, Tan J, et al. A Genome-Wide Identification of the WRKY Family Genes and a Survey of Potential WRKY Target Genes in Dendrobium officinale[J]. Scientific Reports. 2017, 7(1). IF= 4.122